
Cori Application
Readiness Strategy
and Early
Experiences

March, 2016

What is different about Cori?

Edison (Ivy-Bridge):
● 12 Cores Per CPU
● 24 Virtual Cores Per CPU

● 2.4-3.2 GHz

● Can do 4 Double Precision
Operations per Cycle (+ multiply/add)

● 2.5 GB of Memory Per Core

● ~100 GB/s Memory Bandwidth

Cori (Knights-Landing):
● Up to 72 Physical Cores Per CPU
● Up to 288 Virtual Cores Per CPU

● Much slower GHz

● Can do 8 Double Precision
Operations per Cycle (+ multiply/add)

● < 0.3 GB of Fast Memory Per Core
 < 2 GB of Slow Memory Per Core

● Fast memory has ~ 5x DDR4
bandwidth

NESAP
The NERSC Exascale Science Application Program

Code Coverage

Resources for Code Teams
•

–
–

•
–

–

•
–
–

NESAP Postdocs

Taylor Barnes
Quantum ESPRESSO

Brian Friesen
Boxlib

Andrey Ovsyannikov
Chombo-Crunch

Mathieu Lobet
WARP

Tuomas Koskela
XGC1

Tareq Malas
EMGeo

NERSC Staff associated with NESAP

Nick Wright Katie Antypas Brian Austin Zhengji Zhao

Jack Deslippe
Woo-Sun Yang

Helen He Ankit Bhagatwala

Doug Doerfler

Richard Gerber

Rebecca Hartman-Baker
Brandon Cook Thorsten Kurth

Stephen Leak

Timeline

Timeline

Working With Vendors

Dungeon Session Speedups (From Session
and Immediate Followup)

NERSC Is uniquely
positioned between
HPC Vendors and HPC
Users and Applications
developers.

NESAP provides a
power venue for these
two groups to interact.

Optimization Strategy

Important Optimization Concepts

Can You
Increase Flops

Per Byte Loaded
From Memory in
Your Algorithm?

Make
Algorithm
Changes

Explore Using
HBM on Cori

For Key Arrays

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example
in “Half

Packed” Mode

Is
Performance
affected by

Half-
Packing?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least

Partially
CPU Bound

Make Sure Your
Code is

Vectorized!
Measure Cycles
Per Instruction

with VTune

Likely Partially
Memory Latency

Bound
(assuming not IO or

Communication
Bound)

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

Can You
Reduce
Memory

Requests Per
Flop In

Algorithm?

Try Running
With as Many

Virtual
Threads as
Possible (>

240 Per Node
on Cori)

Make
Algorithm
Changes

YesYes

Yes Yes

No

No No

No

The Ant Farm Flow Chart

Can You
Increase Flops

Per Byte Loaded
From Memory in
Your Algorithm?

Make
Algorithm
Changes

Explore Using
HBM on Cori

For Key Arrays

Is
Performance
affected by
Half-Clock

Speed?

Run Example
at “Half Clock”

Speed

Run Example
in “Half

Packed” Mode

Is
Performance
affected by

Half-
Packing?

Your Code is at least
Partially Memory
Bandwidth Bound

You are at
least

Partially
CPU Bound

Make Sure Your
Code is

Vectorized!
Measure Cycles
Per Instruction

with VTune

Likely Partially
Memory Latency

Bound
(assuming not IO or

Communication
Bound)

Use IPM and Darshan to
Measure and Remove
Communication and IO
Bottlenecks from Code

Can You
Reduce
Memory

Requests Per
Flop In

Algorithm?

Try Running
With as Many

Virtual
Threads as
Possible (>

240 Per Node
on Cori)

Make
Algorithm
Changes

Yes Yes

No

No No

No

Are you memory or compute bound? Or both?

Run Example
in “Half

Packed” Mode

srun -N 2 -n 24 -c 2 - S 6 ... VS srun -N 1 -n 24 -c 1 ...

If you run on only half of the cores on a node, each core you do run
has access to more bandwidth

If your performance changes, you are at least partially memory bandwidth bound

If your performance changes, you are at least partially memory bandwidth bound

Are you memory or compute bound? Or both?

Run Example
in “Half

Packed” Mode

 srun -n 24 -N 12 - S 6 ... VS aprun -n 24 -N 24 -S 12 ...

If you run on only half of the cores on a node, each core you do run
has access to more bandwidth

Measuring Your Memory Bandwidth Usage (VTune)

Measure memory
bandwidth usage in
VTune. (Next Talk)

Compare to Stream
GB/s.

If 90% of stream, you
are memory bandwidth

bound.

If less, more tests need
to be done.

Are you memory or compute bound? Or both?

srun --cpu-freq=2400000 ... VS srun --cpu-freq=1900000 ...

Reducing the CPU speed slows down computation, but doesn’t
reduce memory bandwidth available.

If your performance changes, you are at least partially compute bound

Run Example
at “Half Clock”

Speed

So, you are Memory Bandwidth Bound?

What to do?

1. Try to improve memory locality,
 cache reuse

2. Identify the key arrays leading to high memory bandwidth usage and make sure they are/will-
be allocated in HBM on Cori.

Profit by getting ~ 5x more bandwidth GB/s.

So, you are Compute Bound?

What to do?
1. Make sure you have good OpenMP scalability. Look at VTune to see thread activity for major

OpenMP regions.

2. Make sure your code is vectorizing. Look at Cycles per Instruction (CPI) and VPU utilization
in vtune.

See whether intel compiler vectorized loop using compiler flag: -qopt-report=5

Things that prevent vectorization in your code

Example From Cray COE Work on XGC1

Things that prevent vectorization in your code

Example From Cray COE Work on XGC1

~40% speed up
 for kernel

NESAP Case Studies (More on Thursday)

 WARP/PICSAR

Current
deposition

Field
gather

Field
push

Particle
push

● Current deposition (particle-to-grid) and Field gather (grid-to-particle)
most time consuming subroutines

● Large time spent in memory accesses
● Low vectorization

Memory
access

Floating
Point
ops

(scalar)

Floating
point
ops

(vector)

NESAP Lead Ankit Bhagatwala, Mathieu Lobet

Optimization 1: Tiling (Sep 2015)

▪ Improve memory locality by tiling particle and grid quantities

Former data layout in PICSAR Tiled layout

• Particles randomly distributed on the global
process grid

• Poor cache reuse

• Particles grouped in tiles small enough
 that local particle/grid arrays fit in cache
• Particles deposit charge/current on local grid
 array in cache
• Reduction of local charge/current arrays in
 global array
• Slight extra overhead of reduction

Performance improvement from tiling

Lower is better

Tile size >> L2 Tile fits in L2

• Problem size: 80x80x80 cells
• ~10 particles per cell

Optimization 2: Vectorized current deposition

•
•

•
•

Lower is better

VASP

NESAP Lead Zhengji Zhao

VASP profiling- memory bandwidth boudn?

Estimating the performance impact of HBW memory to
VASP code using AutoHBW tool on Edison

Edison, a Cray XC30, with dual-socket Ivy Bridge nodes interconnected with Cray’s Aries network, the bandwidths of the near socket
memory (simulating MCDRAM) and the far socket memory via QPI (simulating DDR) differ by 33%

VASP+FASTMEM performance on Edison

VASP performance comparison between runs when everything was allocated in the DDR memory (blue/slow), when only a few
selected arrays were allocated to HBM (red/mixed), and when everything was allocated to HBM (green/fast). The test case
PdO@Pd-slab was used, and the tests were run on a single Edison node.

•

•

•

•

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
catch us.

•

Without blocking we spill out of L2 on
KNC and Haswell. But, Haswell has L3 to
catch us.

•
•

Conclusions

